SR90 Series
(SR91, SR92, SR93, SR94)
Digital Controller
Instruction Manual

Please check that the delivered product is the correct item or specification you ordered.
Please do not begin operating this product before you read this instruction manual thoroughly and understand its contents.

Notice
Please ensure that this instruction manual is given to the final user of the instrument.

Preface
This instruction manual is meant for those who will be involved in the wiring, installation, operation and routine maintenance of the SR90 series (SR91, SR92, SR93 and SR94) and describes matters to be attended to in handling the SR90 series, how to install it, its wiring, its functions and operating procedures.
Keep this manual at the work site while handling the instrument and follow the guidance provided herein.

SHIMADEN CO., LTD.

SR90F-1BE
Feb. 2006
1. Safety Rules

For matters regarding safety, potential damage to equipment and/or facilities, additional instructions and notes are indicated by the following headings.

WARNING: This heading indicates hazardous conditions that could cause injury or death of personnel unless extreme caution is exercised.

CAUTION: This heading indicates hazardous conditions that could cause damage to equipment and/or facilities unless extreme caution is exercised.

NOTE: This heading indicates additional instructions and/or notes.

The mark is a protective conductor terminal. Make sure to ground it properly.

WARNING

The SR90 series is designed for controlling temperature, humidity and other physical quantities of general industrial equipment. Avoid using it for control of devices upon which human life is dependent. When used, adequate and effective safety measures must be taken. No warranty is valid in the case of an accident arising from the use of this product without having taken such safety measures.

- For using this instrument, house it in a control box or the like to prevent terminals from coming into contact with personnel.
- Do not draw out the instrument out from its case. Do not let your hand or any conductive body into the case. It may lead to serious injury or death due to an electric shock.
- Make sure to ground protective conductor terminals.

CAUTION

To avoid damage to connected equipment, facilities or the SR90 itself due to a fault of the product, safety measures must be taken before usage, such as the installation of a fuse, an overheating protection device and the like. No warranty is valid in the case of an accident arising from the use of this product without such safety measures.

- The alert mark on the plate affixed to the instrument: On the terminal nameplate affixed to the case of this instrument, the alert mark is printed. This is to warn you of the risk of electric shock which may result if the charger is touched while being energized.
- As a means to turn the power off, a switch or a breaker should be installed in the external power circuit to be connected to the power terminal of the instrument. Fix the switch or the breaker adjacent to the instrument in a position which allows it to be operated with ease, with an indication that it is a means of turning the power off. Use a switch or a breaker which meets IEC60947 requirements.

Fuse:

Since the instrument does not have a built-in fuse, do not forget to install a fuse in the power circuit to be connected to the power terminal. A fuse should be positioned between a switch or a breaker and the instrument, and mounted on the L side of the power terminal.

Fuse rating/characteristics: 250 V AC 0.5 A/medium lagged or lagged type.

Use a fuse which meets IEC60127 requirements.

Voltage/current of a load to be connected to the output terminal and the event terminal should be within a rated range. Otherwise, the temperature will rise to reduce the life of the product and/or to result in problems with the product. For rated voltage/current, please refer to "11. Specifications".

The output terminal should be connected with a device which meets the requirements of IEC61010.

A voltage/current different from that of the input specification should not be applied to the input terminal. It may reduce the life of the product and/or result in problems with the product. For rated voltage/current, please refer to "11. Specifications".

The instrument is provided with a draft hole for heat discharge. Take care to prevent metal and other foreign matter from entering into it. Failure to do so may result in trouble with the instrument or may even cause a fire.

Do not block the draft hole or allow dust or the like to stick to it. A rise in temperature or insulation failure may result in a reduction of the life of the product and/or problems with it or may cause a fire. For spaces between installed instruments, refer to "3-3. External Dimensions and Panel Cutout".

It should be noted that repeated tolerance tests against voltage, noise, surge, etc., may lead to deterioration of the instrument.

Users are prohibited from remodeling the product or using it in a prohibited way.
2. Introduction

2-1. Check before Use

This product has been fully inspected for quality assurance prior to shipment. Nevertheless, you are requested to make sure that there is no error, damage or shortage of delivered items by checking the model codes, the external view of the product, and the number of accessories.

Check the model codes affixed to the case of the product to ascertain if the respective codes designate what was specified when you ordered it, referring to the following code table.

SR90 series is based on 3 types of selectable codes SR91, SR92, and SR93/SR94.

(1) Confirmation of Model Codes

[Example of SR91 model type codes]

<table>
<thead>
<tr>
<th>S R 9 1 - 8 Y - 9 0 - 0 N 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Series</td>
</tr>
<tr>
<td>2. Input</td>
</tr>
<tr>
<td>3. Control output (1)</td>
</tr>
<tr>
<td>4. Power supply</td>
</tr>
<tr>
<td>5. Event</td>
</tr>
<tr>
<td>6. Option</td>
</tr>
<tr>
<td>• Control output (2)</td>
</tr>
<tr>
<td>• Heater break alarm</td>
</tr>
<tr>
<td>• Analog output</td>
</tr>
<tr>
<td>• Communication</td>
</tr>
<tr>
<td>• DI</td>
</tr>
<tr>
<td>7. Remarks</td>
</tr>
</tbody>
</table>

[Example of SR92 model type codes]

<table>
<thead>
<tr>
<th>S R 9 2 - 8 Y - N - 9 0 - 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Series</td>
</tr>
<tr>
<td>2. Input</td>
</tr>
<tr>
<td>3. Control output (1)</td>
</tr>
<tr>
<td>4. Control output (2)</td>
</tr>
<tr>
<td>5. Power supply</td>
</tr>
<tr>
<td>6. Event</td>
</tr>
<tr>
<td>Event output + heater break alarm</td>
</tr>
<tr>
<td>7. Analog output</td>
</tr>
<tr>
<td>8. Communication or DI</td>
</tr>
</tbody>
</table>

[Example of SR93/SR94 model type codes]

<table>
<thead>
<tr>
<th>S R 9 3 - 8 Y - N - 9 0 - 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Series</td>
</tr>
<tr>
<td>2. Input</td>
</tr>
<tr>
<td>3. Control output (1)</td>
</tr>
<tr>
<td>4. Control output (2)</td>
</tr>
<tr>
<td>5. Power supply</td>
</tr>
<tr>
<td>6. Event</td>
</tr>
<tr>
<td>Event output + heater break alarm</td>
</tr>
<tr>
<td>7. Option</td>
</tr>
<tr>
<td>• Analog output</td>
</tr>
<tr>
<td>• Di</td>
</tr>
<tr>
<td>• Analog output + DI</td>
</tr>
<tr>
<td>• Communication</td>
</tr>
<tr>
<td>8. Remarks</td>
</tr>
<tr>
<td>68: 0 to 10V DC + DI (set value bias, STBY, or ACT) 1 point</td>
</tr>
<tr>
<td>05: RS-485, 07: RS-232C</td>
</tr>
</tbody>
</table>

05: RS-485, 07: RS-232C

8. Remarks | 0: Without, 9: With |
(2) Confirmation of Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction manual</td>
<td>1 copy</td>
</tr>
<tr>
<td>The Communication interface instruction manual (in case optional communication function is added)</td>
<td>1 copy</td>
</tr>
<tr>
<td>Unit seals</td>
<td>1 sheet</td>
</tr>
<tr>
<td>Current detector for heater break alarm (CT) (in case optional heater break alarm function is added)</td>
<td>1 pc.</td>
</tr>
<tr>
<td>For 30A: Model CTL-6-S</td>
<td>1 pc.</td>
</tr>
<tr>
<td>For 50A: Model CTL-12-S36-8</td>
<td>1 pc.</td>
</tr>
</tbody>
</table>

NOTE: For any problem with the product, shortage of accessories or request for information, please contact our agent or our sales office in your neighborhood.

2-2. Handling Instruction

Do not operate the keys on the front panel with a hard or sharply pointed object. Operate the keys only by softly touching them by your fingertips.

When cleaning the instrument, wipe it gently with a dry cloth. Never use solvent such as a thinner.

3. Installation and Wiring

3-1. Installation Site (environmental conditions)

⚠️ CAUTION

This instrument should not be used in any of the places mentioned below. Selection of these places may result in trouble with the instrument, damage to it or even a fire.

- Where flammable gas, corrosive gas, oil mist and particles that can deteriorate electrical insulation are generated or abundant.
- Where the temperature is below −10°C or above 50°C.
- Where the relative humidity is above 90%RH or below the dew point.
- Where highly intense vibration or impact is generated or transferred.
- Near high voltage power lines or where inductive interference can affect the operation of the instrument.
- Where the instrument is exposed to dew drops or direct sunlight.
- Where the height is above 2000 m.
- Outdoors.

NOTE: The environmental conditions belong to the installation category II of IEC60664 and the degree of pollution is 2.

3-2. Mounting

⚠️ CAUTION

For safety's sake and to protect the functionality of the product, do not draw out its body from the case. If it needs to be drawn out for replacement or repair, call our agent or our sales office in your neighborhood.

- Cut a hole for mounting the controller in the panel by referring to the cutout drawing in Section 3-3.
- The panel thickness should be 1.0 to 4.0 mm.
- As the instrument is provided with pawls for fixing, just press it firmly from the front of the panel.
- The SR90 series instrument is designed in a panel-mounting mode. Never use it without mounting on the panel.
3-3. External Dimensions and Panel Cutout

SR91

SR92

SR93

SR94
External dimensions of current detectors (CT) of heater break alarm

For 0 to 30 A (CTL-6-S)

For 0 to 50 A (CTL-12-S36-8)

3-4. Wiring

WARNING

- Make sure to disconnect this product from any power source during the wiring operation to prevent an electric shock.
- Be certain that the protective conductor terminal (⊕) is properly grounded. Otherwise, an electric shock may result.
- Do not touch wired terminals and other charged elements while they are being energized in order to prevent an electric shock.

Please pay attention the following:

1. In the wiring operation, follow the terminal layout shown in Section 3-5 and the terminal arrangement in Section 3-6 and make sure to carry out the correct wiring process.
2. Use ring tongue terminals that fit an M3.5 screw and have a width of 7 mm or less.
3. In the case of thermocouple input, use a compensating lead wire compatible with the selected type of thermocouple.
4. In the case of R.T.D. input, the resistance of a single lead wire must be 5Ω or less and the three wires must have the same resistance.
5. The input signal wire must not be accommodated with a high-voltage power cable in the same conduit or duct.
6. Shield wiring (single point grounding) is effective against static induction noise.
7. Twisting the input wires at short and equal intervals is effective against electromagnetic induction noise.
8. In wiring for power supply, use a wire or cable whose performance is equal to or higher than the 600V vinyl insulated wire having a sectional area of 1 mm² or larger.
9. The wire for grounding must have a sectional area of 2 mm² or larger and must be grounded at a grounding resistance of 100Ω or less.
10. Clamp the screws of terminals firmly. Clamping torque: 1.0 N • m (10 kgf • cm)
11. If the instrument appears to be easily affected by power supply noise, use a noise filter to prevent malfunctioning. Mount the noise filter on the grounded panel and make the wire connection between the noise filter output and the power line terminals of the controller as short as possible.
12. Connection of current detector (CT)

Insert a load line through the hole of the noise filter meant for the controller. With this wire, connect the secondary side terminal of CT to the CT input terminal of the SR90 series controller.
3-5. Terminal Layout

Follow the terminal layout and terminal arrangement table shown below in your wiring operation.

SR91

[Diagram of SR91 terminal layout]

SR92

[Diagram of SR92 terminal layout]

SR93/SR94

[Diagram of SR93/SR94 terminal layout]
3-6. Terminal Arrangement Table

<table>
<thead>
<tr>
<th>Name of terminal</th>
<th>Description/Code</th>
<th>Terminal No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SR91</td>
</tr>
<tr>
<td>Power supply</td>
<td>100-240V AC/24V AC: L, 24V DC: +</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>100-240V AC/24V AC: N, 24V DC: −</td>
<td>7</td>
</tr>
<tr>
<td>Protective conductor</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>R.T.D.: B, thermocouple/voltage/current: −</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>R.T.D.: B</td>
<td>5</td>
</tr>
<tr>
<td>Control output 1</td>
<td>Contact: NO, SSR drive voltage/Voltage/Current: +</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Contact: NO, SSR drive voltage/Voltage/Current: −</td>
<td>10</td>
</tr>
<tr>
<td>Control output 2</td>
<td>Contact: NO, SSR drive voltage/Voltage/Current: +</td>
<td>11</td>
</tr>
<tr>
<td>(option)</td>
<td>Contact: NO, SSR drive voltage/Voltage/Current: −</td>
<td>12</td>
</tr>
<tr>
<td>Event output</td>
<td>COM</td>
<td>13</td>
</tr>
<tr>
<td>(option)</td>
<td>EV1</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>EV2</td>
<td>15</td>
</tr>
<tr>
<td>Heater break (option)</td>
<td>CT input</td>
<td>11-12</td>
</tr>
<tr>
<td>Analog output</td>
<td>+</td>
<td>11</td>
</tr>
<tr>
<td>(option)</td>
<td>−</td>
<td>12</td>
</tr>
<tr>
<td>Communication</td>
<td>RS-232C: SD, RS-485: +</td>
<td>2</td>
</tr>
<tr>
<td>(option)</td>
<td>RS-232C: RD, RS-485: −</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SG</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RS-485: +</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>RS-485: −</td>
<td>12</td>
</tr>
<tr>
<td>DI (option)</td>
<td></td>
<td>11-12</td>
</tr>
</tbody>
</table>

NOTE: With thermocouple/voltage/current input, shorting across B and B terminal will cause an error.

NOTE: The optional functions of the SR90 are subject to the following conditions:

SR91: Only one of control output 2, heater break alarm, analog output, communication and DI is selectable.
SR92: Communication and DI are not selectable simultaneously.
SR93/SR94: Communication and analog output, or communication and DI are not selectable simultaneously. Simultaneous selection of analog output and DI is possible, though.

3-7. Before Starting Operation

To begin with, check the wiring and set the items listed below by the setting methods of the screen groups. Factory-set items and items already set by equipment manufacturers need not be set here.

1. Checking of wiring:
 Check that the wiring to connected terminals is carried out properly. Erroneous wiring will result in burnout.

2. Application of operating power:
 Apply operating power. The controller is energized and the data display and other lamps light.

3. Setting of measuring range:
 Call the screen 1-51 (measuring range code screen) of the screen group 1 and select and register a code from the measuring range codes. Call the screen 1-52 (temperature unit setting screen) of the screen group 1 and select and register a temperature unit. For current, voltage or mV input, lower/higher limit values and the position of decimal point should be set on the screen 1-53, 1-54 or 1-55 respectively.

4. Setting of control mode (PID):
 In the case of ON-OFF (two-position) control, call the screen 1-2 (output 1 proportional band setting screen) of the screen group 1, select OFF and register it. Call the screen 1-3 (output 1 hysteresis setting screen) of the screen group 1, set and register it. Follow the same procedure for output 2 if the option is added.

5. Omit this setting in the case of AT (Auto Tuning).

5. Setting of control output characteristics:
 Call the screen 1-45 (control output characteristic setting screen) of the screen group 1 and select either RA (Reverse Action) or DA (Direct Action) correspondingly to output characteristic specification (Heating/Cooling).

6. Setting of event type:
 If the optional event function is added, call the screen 1-21 and/or 1-24 (event alarm type code setting screen) of the screen group 1 and select and register a code.

7. Setting of analog output:
 If the optional analog output function is added, call the screen 1-32 (analog output type setting screen) of the screen group 1 and select one from the setting range and register it.

8. Note on initialization following data change:
 When the code of measuring range, event type or analog output type is changed, a set value is initialized and resetting is required.
4. Names and Functions of Parts on Front Panel

Measured value (PV) display:
1. Present measured value (PV) is displayed on the screen group 0, basic screen and output display screens (OUT1 and OUT2). (red)
2. Type of parameter is shown on each parameter screen.
3. The decimal point at the lowest digit flashes when the controller is in standby (STBY) mode.

Target set value (SV) display:
1. Target set value (SV) is displayed on the basic screen of the screen group 0. (green)
2. Present output value is displayed by % on control output monitor screens (OUT1, OUT2) of the screen group 0.
3. Selected item and set value are displayed on each parameter screen.

Action display lamps:
1. Control output indicators: OUT1 and OUT2 (option) (green)
 - OUT1 lights up when output turns ON and goes out when it turns OFF during contact or SSR drive voltage output.
 - The brightness changes in proportion to output increase/decrease during current or voltage output.
 - OUT2 functions only if the option is added.
2. Event output indicators: EV1/EV2 (option) (orange)
 - Light up when assigned events (including heater breaker/heater loop alarm) turn ON if event option is added.
3. Auto tuning action indicator: AT (green)
 - Flashes when ON is selected by key on the AT action selection screen and AT is executed by key, and goes out when AT terminates automatically or is released.
 - Flashes when manual control output is selected on control output display screens (OUT1, OUT2). Goes out when automatic (PID) control output is executed.
5. Set value bias/communication indicator: SB/COM (option) (green)
 - Lights up when optional DI function is added, SB (set value bias) is assigned to it, and at the time of shorting across the SB, DI terminal (set value bias in action).
 - Lights up when optional communication function is added and COM mode is selected.
 - Goes out when Local is selected for communication mode.

Operating keys:
1. (parameter) key
 - Pressing this key on any screen of the screen group 0 and the screen group 1 calls the next screen onto display.
 - When pressed continuously for 3 seconds, this key functions to move between the basic screen of screen group 0 and the initial screen of screen group 1.
 - Pressing this key simultaneously with key in the screen group 1 calls the preceding screen onto display.
2. (down) key
 - When pressed on a parameter screen, the decimal point at the lowest digit flashes and the set data decreases or moves backward.
3. (up) key
 - When pressed on a parameter screen, the decimal point at the lowest digit flashes and the set data increases or moves forward.
4. (entry/registration) key
 - Used to register a set data changed by means of or key on a parameter screen.
 - Pressing this key simultaneously with key on a screen of the screen group 1 calls the preceding screen onto display.
 - When pressed continuously for 3 seconds on the control output screens (OUT1, OUT2), or pressing key functions to switch between automatic output and manual output.
5. Explanation of Screens and Setting

5-1. Parameter Flow

Outline of Parameter Flow displayed below. Set parameter according to the explanation of each setting screen.

NOTE: Four kinds of frame lines signify the following:
- Screens regularly shown by key operation and other means
- Screens shown when appropriate options are added or selected
- Screens which may or may not be shown depending on control action modes (PID action or ON-OFF action)
- Screens for monitoring (without automatic return after 3 minutes)

Screen Group 0

0-0 Basic screen
0-1 Output monitoring OUT1
0-2 Output monitoring OUT2
0-3 STBY action
0-4 AT action
0-5 Event 1 action
0-6 Event 2 action
0-7 Set value bias

0-0 To basic screen

Screen Group 1

1-0 Initial screen
1-1 Keyplock setting
1-2 Output 1 proportional band setting
1-3 Output 1 hysteresis setting
1-4 Output 1 integral time setting
1-5 Output 1 derivative time setting
1-6 Output 1 manual reset
1-7 Output 1 target value function setting
1-8 Output 1 lower limit output limiter setting
1-9 Output 1 higher limit output limiter setting
1-10 Output 1 proportional cycle time setting
1-11 Output 2 proportional band setting
1-12 Output 2 hysteresis setting
1-13 Output 2 integral time setting
1-14 Output 2 derivative time setting
1-15 Output 2 target value function setting
1-16 Output 2 lower limit output limiter setting
1-17 Output 2 higher limit output limiter setting
1-18 Output 2 proportional cycle time setting
1-19 Event at STBY setting
1-20 Event 1 type setting
1-21 Event 1 hysteresis setting
1-22 Event 1 standby action code setting
1-23 Event 1 type setting
1-24 Event 2 standby action code setting
1-25 Event 2 hysteresis setting
1-26 Event 2 type setting
1-27 Event 2 standby action code setting

To 1-28 screen From 1-28 screen

NOTE1: When the key is pressed on any screen of the screen group 0, the next screen appears.

NOTE2: When the key is pressed on any screen of the screen group 1, the next screen appears. To return to the preceding screen, press the key while pressing the key.

NOTE3: Moving between the two screen groups: Pressing the key continuously for 3 seconds on the 0-0 basic screen of the screen group 0 calls the 1-0 initial screen of the screen group 1 onto display and vice versa.

1-28 Heater break/loop alarm action setting
1-29 Heater break/loop standby setting
1-30 Heater break alarm value setting
1-31 Heater loop alarm value setting
1-32 Analog output type setting
1-33 Analog output scaling lower limit
1-34 Analog output scaling higher limit
1-35 DI mode setting
1-36 Communication mode setting
1-37 Communication protocol setting
1-38 Communication address setting
1-39 Communication data format setting
1-40 Start character setting
1-41 BCC operation type setting
1-42 Communication speed setting
1-43 Output dead band setting
1-44 Communication memory mode setting
1-45 Current output characteristic setting
1-46 Soft start time setting
1-47 SV limiter lower limit value setting
1-48 SV limiter higher limit value setting
1-49 PV bias value setting
1-50 PV filter time setting
1-51 Measuring range code setting
1-52 Temperature unit setting
1-53 Input scaling lower limit value setting
1-54 Input scaling higher limit value setting
1-55 Input scaling decimal point position
1-56 CJ external/Internal setting
1-57 PV display at standby setting

To 1-28 screen From 1-28 screen

To 1-0 screen From 1-0 screen
5-2. Display upon Power-ON

When power is applied, initial screens upon power-ON are displayed successively, each for about 1 second. Then the basic screen is displayed.

- Name of series: Sr9, Sr92, Sr93, Sr94
- Input type: Ec: Thermocouple, Pt: R.T.D., H: Voltage (mV), U: Voltage (V), I: Current (mA)
- OUT1 output type: Y: Contact, P: SSR drive voltage, U: Voltage, I: Current
- OUT2 output type: Y: Contact, P: SSR drive voltage, U: Voltage, I: Current

5-3. How to Change Screens

Screen group 0 (the group of screens for setting primarily by the end user)
Screen group 1 (the group of screens for setting primarily by the manufacturer or equipment manufacturers)

(1) How to change screens in screen group 0
Every time the key is pressed, the screen moves to the next and the 0-0 basic screen returns when it is pressed on the last screen.

(2) How to change screen group 0 to/from screen group 1
Pressing the key continuously for 3 seconds on the basic screen of the screen group 0 calls the 1-0 initial screen of the screen group 1 onto display. Also by pressing the key continuously on the 1-0 initial screen of the screen group 1 calls the basic screen of screen group 0.

(3) How to change screen in screen group 1
Starting from the 1-0 initial screen of the screen group 1, every time the key is pressed, the next screen appears and the 1-0 initial screen returns when it is pressed on the last screen. When holding down the key and pressing the key in the screen group 1, you can go back to the preceding screen. When holding down the key and pressing the key on the 1-0 initial screen, the last screen of this group, i.e., the 1-57 PV display at standby setting screen appears on the display.
(4) How to change set values (data)

To change data on a screen, use the ▲ or ▼ key, and register the changed data by pressing the → key.

5-4. Auto Return Function

If no key is operated for 3 minutes or longer on a screen (except the 0-1 output 1 monitor screen, 0-2 output 2 monitor screen and 1-27 heater current monitor screen), the screen automatically changes to the 0-0 basic screen of the mode 0 screen group. This is called auto return.

5-5. Procedure of Setting in Screen Group 0

The flow of setting screens is explained in the following section "6. Explanation of Screen Group and Setting". In this section, the procedure of setting is described.

Key operation: Use the ⑤ key to call the next screen. On each setting screen, use the ▲ or ▼ key for selection and the → key for registration. Nevertheless, in case the value of manual control output is changed on the output monitor screen, the → key need not be pressed.

(1) Setting of target set value (SV)

1. To set a target set value (SV), press the ▲ or ▼ key on the 0-0 basic screen. When either of the keys is pressed continuously, the decimal point of the lowermost digit flashes and the numerical value keeps increasing or decreasing. When it reaches a target set value, press the → key to register.
2. Once it reaches the target set value, the digit stops flashing.

Example: 500.0°C is to be set as a target set value.

<table>
<thead>
<tr>
<th>Key</th>
<th>0-0 basic screen</th>
<th>Key</th>
<th>0-0 basic screen</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>250</td>
<td>●</td>
<td>250</td>
<td>●</td>
</tr>
<tr>
<td>00</td>
<td>continuously</td>
<td>4976</td>
<td>continuously</td>
<td>5000</td>
</tr>
</tbody>
</table>

(2) Manual setting of control output

1) Switching between automatic output and manual output on output monitor screen (OUT1 and OUT2) and setting:

To switch auto to manual and vice versa, press the → key for 3 seconds continuously, or press the ▲ key while holding the → key on the screen 0-1 output 1 monitoring screen or the screen 0-2 output 2 monitoring screen. Upon turning to manual, the MAN lamp flashes and it remains unlighted during automatic output.

To set a target value at manual output, press the ▲ or ▼ key on the output monitor screen to keep the numerical value increasing or decreasing until a target value is reached.

To release manual output, press the → key for 3 seconds continuously, or press the ▲ key while holding the → key, and automatic output returns.

① If the output mode of either output 1 or output 2 is changed to manual, the output mode of the other is also changed to manual. Also, if changed to auto, the output of the other will be changed to auto as well.

② In case the output of output 1 is at 100.0%, 999 is displayed on the output 1 screen and the decimal point of flashes.

③ In case the output of output 2 is at 100.0%, 999 is displayed on the output 2 screen and the decimal point of flashes.

④ In case output is of contact or SSR drive voltage and OFF is set for proportional band (P), the value of output will be 0.0% or 100.0%.

⑤ In case output is of voltage or current and OFF is set for proportional band (P), the value of output will be the lower limit value or the higher limit value of a set output limiter.

While auto tuning (AT) is in execution, switching to manual output is not possible. It should be done after releasing AT.

<table>
<thead>
<tr>
<th>Key</th>
<th>0-1 Output monitor screen</th>
<th>Key</th>
<th>0-1 Output monitor screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press → key for 3 seconds</td>
<td>Press → key for 3 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press → key continuously</td>
<td>Press → key continuously</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press → key</td>
<td>Press → key</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Automatic output | Manual output | Manual output | Automatic output

MAN display lamp stops flashing | MAN display lamp flashes | MAN display lamp flashes | MAN display lamp stops flashing

13
2) Supplementary explanation of using the manual control output

Monitor screens (OUT1 and OUT2) and automatic/manual output:

① When automatic output is changed to manual, balanceless/bumpless transfer is provided, and the value of output right before the change is displayed. Changing from manual to auto also provides balanceless/bumpless transfer, but not if the PV value is outside the proportional band.

② If power supply is shut off and power is applied again, control output continues to be in auto or manual at the time when power supply is shut off.

NOTE: Although a change to another screen in the manual mode is possible, it should be noted that control output is manual in this case. Flashing of the MAN monitor LED indicates that the manual mode is ON.

③ Manual output is released when one of the following parameters is changed:
 Range, unit, or higher/lower limit of scaling

(3) AT (auto tuning)

AT is the function of automatically computing and setting P.I.D. value, the parameters of P.I.D. control. Computing time differs depending on the details of control.

1) Execution of AT

Pressing the ▲ key on the 0-4 AT action control screen, change OFF displayed on the bottom to on and the decimal point of the lowermost digit flashes. Then press the ▼ key. The decimal point stops flashing, the AT lamp flashes and AT starts.

When AT is executed, ON-OFF action of output in response to rising and falling of the measured value from the target set value is repeated several times to store PID values internally and AT ends. At the same time control using stored PID values begins and the AT lamp goes out.

2) Stop of AT

To stop AT in the middle of execution, select OFF by using the ▼ key on the 0-4 AT action control screen and by pressing the ▲ key, releases the AT and the decimal point and the AT lamp stops flashing.

3) Unexecutable conditions of AT

In the following conditions, AT is unable to be executed:

① Control output is in manual. (The AT screen is not displayed.)
② Under STBY mode. (The AT screen is not displayed.)
③ Scaleover of PV (measured value). (The AT screen is not displayed.)
④ OFF is selected for proportional band (P) of output 1. (The AT screen is not displayed.)
⑤ Lock No. 2 or 3 is selected on the keylock screen.
4) Automatic stop conditions of AT

If any of the following occur while AT is in execution, AT will be released:

- The output value has been at 0% or 100% continuously for 200 minutes.
- Scaleover of PV value
- The control execution is changed to standby.

5) AT action in two-output specification

AT works as follows up to the RA or DA characteristic in the two-output specifications:

- RA characteristic: PID constants are common to OUT1 and OUT2.
- DA characteristic: AT is executed only for OUT1. While AT is in execution, output of OUT2 is at 0% or the lower limit value of output limiter.

(4) Standby mode (STBY)

1) What is standby mode?

This instrument supports standby mode (STBY), which stops the control operation temporarily. Switching to/from execution/STBY can be set on the 0-3 STBY action control screen. When STBY is assigned to DI (external input) on the 1-35 DI mode setting screen, the setting on the screen 0-3 cannot be performed, as DI setting is preferred.

- During STBY, the decimal point of the lowermost digit on the PV display flashes.
- The output value is 0% during STBY.
- When STBY is selected, AT (auto tuning) is stopped.
- When STBY is selected in manual control, manual control is released.
- If the power supply is shut off in STBY and power is applied again, STBY is still selected.
- During STBY, event output can be set at enable or disable.
- If set, event standby action can be executed when the instrument is switched from standby (STBY ON) to execution (STBY OFF).

2) Event at standby

Event can be set enable or disable on the 1-20 event at STBY setting screen.

- **off**: Event output disabled (except for status).
- **on**: Event output enabled when the specified condition is satisfied.

Note that event isn’t output in case control mode is selected for event standby action (Code 4 on the screen 1-23 or 1-26).

If S_0 or H_0 is assigned to event type, the event is output even if it is in STBY.

3) PV display at standby

PV display at standby can be set on the 1-57 PV display at standby setting screen.

- **PD**: During STBY, PV value is displayed on the basic screen and the output monitoring screen.
- **Stby**: During STBY, the characters "Stby" are displayed instead of the PV value on the basic screen and the output monitoring screen.
Setting of event set value

Before a value is set, an event type should be set as described in the following paragraph, "1) Event type setting". When an event type code is changed, however, all the set values (data) concerning the event are initialized.

1) Event type (alarm type) setting

Call the 1-21 event 1 type code setting screen (or the 1-24 for event 2) of the screen group 1 and select one from the type codes Hd, Ld, od, id, HA and LA by pressing the ✳ or ✬ key. Then register it by the ✦ key. There are the following 6 event type (alarm type) codes:

- **Hd**: Higher limit deviation
- **Ld**: Lower limit deviation
- **od**: Outside higher/lower limit deviations
- **cd**: Within higher/lower limit deviations
- **HA**: Higher limit absolute value
- **LA**: Lower limit absolute value

- **off**: None, **So**: Scaleover, and **Hb**: Heater break/loop alarm are screen display only.

2) Setting of event value

The 0-5 event 1 set value setting screen or the 0-6 event 2 set value setting screen will set. The screen will be displayed when either of the previous 6 types of event is selected.

Set the aimed value by pressing the ✳ or ✬ key on screen (setting range is described below). When the ✦ key is pressed to register the set event value, the decimal point stops flashing.

Setting ranges:
- Higher limit deviation value or lower limit deviation value: −1999 to 2000 units
- Outside or within higher/lower limit deviation values: 0 to 2000 units
- Higher limit absolute value or lower limit absolute value: Within measuring range

No event value can be set while AT (auto tuning) is in execution. Set after releasing AT.

Set value bias

1) Set value bias

As an optional function, additional setting of another target set value is possible. It is set as a set value bias which indicates a deviation from the target set value. For instance, when 20°C has been set as the target set and you want to set another set value at 30°C, set the set value bias at +10°C.

The set value bias becomes effective when the SB,DI terminals are shorting. When the SB,DI terminals are not shorting, the set value bias is not effective. This function is used conveniently to switch a target value between "summer and winter"/"day and night" and the like.

2) Setting of set value bias

In case the optional DI function is added, press the ✳ or ✬ key on the screen 0-7 to set a numerical value of set value bias and register the value by pressing the ✦ key. The decimal point stops flashing.

The set value remains effective while the SB,DI terminals are shorting and is added/subtracted to/from the target set value. When a set value bias is set and it is effective, the SB/COM lamp lights.

Setting range: −1999 to 5000 units
6. Explanation of Screen Group and Setting

- **Initial screen**
 - Pressing the \(\text{key} \) for 3 seconds continuously on the basic screen calls this screen. There is no item to be set on this screen. When the \(\text{key} \) is pressed, the keylock setting screen, which is the first setting screen, appears. Pressing the \(\text{key} \) while holding down the \(\text{key} \) calls the last screen, i.e., the PV display at standby setting screen.

1. **Setting of keylock**
 - **Initial value:** OFF
 - **Setting range:** OFF, 1, 2, 3
 - **Description:** Lock items which you don’t want to be changed. Data are unable to be changed on locked screens. Select OFF to release the lock.

<table>
<thead>
<tr>
<th>Lock No.</th>
<th>Range to be locked</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Release of lock (All data allowed to be changed.)</td>
</tr>
<tr>
<td>1</td>
<td>Keylock for all screens except the screen group 0 and communication mode.</td>
</tr>
<tr>
<td>2</td>
<td>Keylock for all screens except basic screen and communication mode.</td>
</tr>
<tr>
<td>3</td>
<td>Keylock for all screens except communication mode.</td>
</tr>
</tbody>
</table>

- **Output 1 (OUT1) monitor screen**
 - A measured value (PV) is displayed. The bottom is for monitoring of the control output value of output 1 in the automatic mode and for changing a set value in the manual mode.
 - Manual output setting range: 0.0 ~ 100.0% (within output 1 limiter)
 - Output monitor screens (OUT1 and OUT2) and auto/manual output
 - When the output mode (auto or manual) of either output 1 or output 2 is changed, the output mode of the other is also changed.
 - When the output is manual the Man lamp flashes.

- **Output 2 (OUT2) monitor screen**
 - A measured value (PV) is displayed. The bottom is for monitoring of the control output value of output 2 in the automatic mode and for changing a set value in the manual mode.
 - Manual output setting range: 0.0 ~ 100.0% (within output 2 limiter)
 - The screen appears only if the optional function of output 2 is added.

- **STBY (standby) action control screen**
 - Initial value: EXE
 - Setting range: STBY, EXE
 - This screen is only for monitoring when STBY is selected on the 1-35 DI mode setting screen.
 - Set either the control standby (STBY) or execute (EXE).
 - For STBY, see Section 5-5 (4).

- **AT (auto tuning) action control screen**
 - Initial value: OFF
 - Setting range: OFF, ON
 - AT is executed when ON is selected and is released when OFF is selected. This screen does not appear during manual output and when OFF is set for proportional band (P) of output 1.
 - While AT is being executed, key operation other than for releasing AT, setting keylock and switching a communication mode is not possible.
 - For AT action, see Section 5-5 (3).

- **Event 1 (EV1) set value setting screen**
 - Initial value: 0 unit
 - Setting range: \(-1999 \rightarrow 5000 \) units
 - This screen is displayed when the optional DI, set value bias function is selected. A set value is effective while the SB,DI terminals are shorted and it is added to or reduced from the set value.
 - When an SB is effective, the monitor LED lamp SB/COM lights.

- **Event 2 (EV2) set value setting screen**
 - The above description of the 0-5 screen applies to the 0-6 screen, only with a change of EV1 to EV2.

- **Event 3 (EV3) set value setting screen**
 - Initial value: 0 unit
 - Setting range: \(-1999 \rightarrow 5000 \) units
 - This screen is displayed when the optional DI, set value bias function is selected. A set value is effective while the SB,DI terminals are shorted and it is added to or reduced from the set value.
 - When an SB is effective, the monitor LED lamp SB/COM lights.

- **Event 4 (EV4) set value setting screen**
 - Initial value: 0 unit
 - Setting range: \(-1999 \rightarrow 5000 \) units
 - This screen is displayed when the optional DI, set value bias function is selected. A set value is effective while the SB,DI terminals are shorted and it is added to or reduced from the set value.
 - When an SB is effective, the monitor LED lamp SB/COM lights.

- **Event 5 (EV5) set value setting screen**
 - Initial value: 0 unit
 - Setting range: \(-1999 \rightarrow 5000 \) units
 - This screen is displayed when the optional DI, set value bias function is selected. A set value is effective while the SB,DI terminals are shorted and it is added to or reduced from the set value.
 - When an SB is effective, the monitor LED lamp SB/COM lights.

- **Event 6 (EV6) set value setting screen**
 - Initial value: 0 unit
 - Setting range: \(-1999 \rightarrow 5000 \) units
 - This screen is displayed when the optional DI, set value bias function is selected. A set value is effective while the SB,DI terminals are shorted and it is added to or reduced from the set value.
 - When an SB is effective, the monitor LED lamp SB/COM lights.

- **Event 7 (EV7) set value setting screen**
 - Initial value: 0 unit
 - Setting range: \(-1999 \rightarrow 5000 \) units
 - This screen is displayed when the optional DI, set value bias function is selected. A set value is effective while the SB,DI terminals are shorted and it is added to or reduced from the set value.
 - When an SB is effective, the monitor LED lamp SB/COM lights.
(2) Setting of output

1-2

Output 1 proportional band (P) setting screen

Initial value: 3.0%
Setting range: 0.1 ~ 999.9%

Basically setting of this item is not necessary for the execution of auto tuning. For proportional band, refer to Section 8-4 (1).

To change to ON-OFF (two-position) action, select OFF.

1-3

Output 1 hysteresis setting screen

Initial value: 20 units
Setting range: 1 ~ 999 units

Set the "Hysteresis" of ON-OFF action. This screen is displayed only when OFF is selected for "P=OFF" on the preceding 1-2 screen.

1-4

Output 1 integral time setting screen

Initial value: 120 seconds
Setting range: OFF, 1 ~ 6000 seconds

Basically, setting of this item is not necessary when auto tuning is executed.

For integral time, refer to Section 8-4 (2).

This screen is not displayed when P=OFF is selected.

1-5

Output 1 derivative time setting screen

Initial value: 30 seconds
Setting range: OFF, 1 ~ 3600 seconds

Basically, setting of this item is not necessary when auto tuning is executed.

For derivative time, refer to Section 8-4 (3).

This screen is not displayed when P=OFF is selected.

1-6

Output 1 manual reset setting screen

Initial value: 0.0%
Setting range: -50.0% ~ 50.0%

A value for offset correction is set when OFF is selected for I (P action or PD action).

When OFF is selected when P=OFF is selected.

Refer to Section 8-4 (4).

1-7

Output 1 target value function setting screen

Initial value: 0.40
Setting range: OFF, 0.01 ~ 1.00

A value to be used to suppress overshooting or undershooting in expert PID is set.

Setting 1.00 for SF makes overshoots minimum.

When SF=OFF is selected, expert PID does not function and ordinary PID action is carried out.

This screen is not displayed when P=OFF is selected.

1-8

Output 1 lower limit output limiter setting screen

Initial value: 0.0
Setting range: 0.0 ~ 99.9%

A lower limit value of control output 1 is set.

For output limiter, refer to Section 8-5.

1-9

Output 1 higher limit output limiter setting screen

Initial value: 100.0
Setting range: 0.1 ~ 100.0%

A higher limit value of control output 1 is set.

1-10

Output 1 proportional cycle time setting screen

Initial value: Contact output: 30 seconds
SSR drive voltage output: 3 seconds

Setting range: 1 ~ 120 seconds.

Proportional cycle time of control output 1 is set.

The screen is not displayed for voltage or current output.

For proportional cycle time, refer to Section 8-6.

1-11

Output 2 (OUT2) proportional band (P) setting screen

Initial value: 3.0%
Setting range: OFF, 0.1 ~ 999.9%

The same as the output 1 (OUT1) proportional band (P) setting screen.

This screen is displayed when the optional output 2 function is added.

1-12

Output 2 hysteresis setting screen

Initial value: 20 units
Setting range: 1 ~ 999 units

"Hysteresis" for ON-OFF action is set.

This screen is displayed when the optional output 2 function is added.

1-13

Output 2 integral time setting screen

Initial value: 120 seconds
Setting range: OFF, 1 ~ 6000 seconds

The same as the output 1 integral time setting screen.

1-14

Output 2 derivative time setting screen

Initial value: 30 seconds
Setting range: OFF, 1 ~ 3600 seconds

The same as the output 1 derivative time setting screen.

1-15

Output deadband setting screen

Initial value: 0 unit
Setting range: -1000 ~ 5000 units

The position of the action output 2 against the target set value (SV) is set.

For dead band, refer to section 8-7.

1-16

Output deadband setting screen

Initial value: 0.40
Setting range: OFF, 0.01 ~ 1.00

The same as the output 1 target value function setting screen.

1-17

Output 2 lower limit output limiter setting screen

Initial value: 0.0
Setting range: 0.0 ~ 99.9%

A lower limit value of control output 2 is set.

1-18

Output 2 higher limit output limiter setting screen

Initial value: 100.0
Setting range: 0.1 ~ 100.0%

A higher limit value of control output 2 is set.

1-19

Output 2 proportional cycle time setting screen

Initial value: Contact output: 30 seconds
SSR drive voltage output: 3 seconds

Setting range: 1 ~ 120 seconds.

Proportional cycle time of control output 2 is set.

1-20

Output 2 proportional cycle time setting screen

Initial value: Contact output: 30 seconds
SSR drive voltage output: 3 seconds

Setting range: 1 ~ 120 seconds.

Proportional cycle time of control output 2 is set.

To the 1-10 screen

To the 1-20 screen
Setting range: OFF, ON
Set whether specified event is enabled or disabled during standby. For details, refer to Section 5-5 (4).

This screen is displayed when the optional heater break/loop alarm function is added and used to monitor heater current. (There is no item to be set on this screen.)

is displayed when stable current value has not been gained.

NOTE:
Heater break/loop alarm works on output 1.
Heater break/loop alarm is selectable as event 1 or event 2.
Heater break/loop alarm is assignable in case output 1 is of contact or SSR drive voltage.

As this screen is for monitoring only, auto return does not function.

(3) Setting of events

Please refer to section 8-1, 8-2 and 8-3.

Event at STBY setting screen
Initial value: OFF
Setting range: OFF, ON
Set whether specified event is enabled or disabled during standby. For details, refer to Section 5-5 (4).

Event type code setting screen
Initial value: Hd
Setting range: OFF, Hd, Ld, od, id, HA, LA, So, Hb
The type of event to be selected as event 1 is selected from the following code table.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type of event</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No selection</td>
<td></td>
</tr>
<tr>
<td>Hd</td>
<td>Higher limit deviation</td>
<td>Initial value of event 1</td>
</tr>
<tr>
<td>Ld</td>
<td>Lower limit deviation</td>
<td>Initial value of event 2</td>
</tr>
<tr>
<td>od</td>
<td>Outside high/low limit deviations</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>Within high/low limit deviations</td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>Higher limit absolute value</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>Lower limit absolute value</td>
<td></td>
</tr>
<tr>
<td>So</td>
<td>Scaleover</td>
<td></td>
</tr>
<tr>
<td>Hb</td>
<td>Heater break/loop alarm</td>
<td>Displayed only when the option is selected.</td>
</tr>
</tbody>
</table>

Event 1 hysteresis setting screen
Initial value: 5 units
Setting range: 1 ~ 999 units
ON-OFF hysteresis is set for event 1.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

Event 1 standby action code setting screen
Initial value: 1
Setting range: 1, 2, 3, 4
An event 1 standby action type code is selected from the following table.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Without standby function</td>
</tr>
<tr>
<td>2</td>
<td>Standby action when power is applied or when STBY is switched ON to OFF.</td>
</tr>
<tr>
<td>3</td>
<td>Standby action when power is applied, or when STBY is switched ON to OFF, or when SV in execution is changed.</td>
</tr>
<tr>
<td>4</td>
<td>Control mode (without standby)</td>
</tr>
</tbody>
</table>

Event 2 type code setting screen
Initial value: Ld
Setting range: OFF, Hd, Ld, od, id, HA, LA, So, Hb
The type of alarm to be selected as event 2 is selected from the table of codes.

Event 2 hysteresis setting screen
Initial value: 5 units
Setting range: 1 ~ 999 units
ON-OFF hysteresis is set for event 2.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

Event 2 standby action code setting screen
Initial value: 1
Setting range: 1, 2, 3, 4
An event 2 standby action type code is selected from the following table.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

Event 1 type code setting screen
Initial value: Hd
Setting range: OFF, Hd, Ld, od, id, HA, LA, So, Hb
The type of event to be selected as event 1 is selected from the following code table.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type of event</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No selection</td>
<td></td>
</tr>
<tr>
<td>Hd</td>
<td>Higher limit deviation</td>
<td>Initial value of event 1</td>
</tr>
<tr>
<td>Ld</td>
<td>Lower limit deviation</td>
<td>Initial value of event 2</td>
</tr>
<tr>
<td>od</td>
<td>Outside high/low limit deviations</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>Within high/low limit deviations</td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>Higher limit absolute value</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>Lower limit absolute value</td>
<td></td>
</tr>
<tr>
<td>So</td>
<td>Scaleover</td>
<td></td>
</tr>
<tr>
<td>Hb</td>
<td>Heater break/loop alarm</td>
<td>Displayed only when the option is selected.</td>
</tr>
</tbody>
</table>

(4) Setting of Heater break/loop alarm

Heater current monitor screen
This screen is displayed when the optional heater break/loop alarm function is added and used to monitor heater current. (There is no item to be set on this screen.)

is displayed when stable current value has not been gained.

NOTE:
Heater break/loop alarm works on output 1.
Heater break/loop alarm is selectable as event 1 or event 2.
Heater break/loop alarm is assignable in case output 1 is of contact or SSR drive voltage.

As this screen is for monitoring only, auto return does not function.

Event 1 type code setting screen
Initial value: Hd
Setting range: OFF, Hd, Ld, od, id, HA, LA, So, Hb
The type of event to be selected as event 1 is selected from the following code table.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type of event</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No selection</td>
<td></td>
</tr>
<tr>
<td>Hd</td>
<td>Higher limit deviation</td>
<td>Initial value of event 1</td>
</tr>
<tr>
<td>Ld</td>
<td>Lower limit deviation</td>
<td>Initial value of event 2</td>
</tr>
<tr>
<td>od</td>
<td>Outside high/low limit deviations</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>Within high/low limit deviations</td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>Higher limit absolute value</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>Lower limit absolute value</td>
<td></td>
</tr>
<tr>
<td>So</td>
<td>Scaleover</td>
<td></td>
</tr>
<tr>
<td>Hb</td>
<td>Heater break/loop alarm</td>
<td>Displayed only when the option is selected.</td>
</tr>
</tbody>
</table>

Event 1 hysteresis setting screen
Initial value: 5 units
Setting range: 1 ~ 999 units
ON-OFF hysteresis is set for event 1.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

Event 1 standby action code setting screen
Initial value: 1
Setting range: 1, 2, 3, 4
An event 1 standby action type code is selected from the following table.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Without standby function</td>
</tr>
<tr>
<td>2</td>
<td>Standby action when power is applied or when STBY is switched ON to OFF.</td>
</tr>
<tr>
<td>3</td>
<td>Standby action when power is applied, or when STBY is switched ON to OFF, or when SV in execution is changed.</td>
</tr>
<tr>
<td>4</td>
<td>Control mode (without standby)</td>
</tr>
</tbody>
</table>

Event 2 type code setting screen
Initial value: Ld
Setting range: OFF, Hd, Ld, od, id, HA, LA, So, Hb
The type of alarm to be selected as event 2 is selected from the table of codes.

Event 2 hysteresis setting screen
Initial value: 5 units
Setting range: 1 ~ 999 units
ON-OFF hysteresis is set for event 2.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

Event 2 standby action code setting screen
Initial value: 1
Setting range: 1, 2, 3, 4
An event 2 standby action type code is selected from the following table.

This screen is displayed when an alarm type code is selected from Hd, Ld, od, id, HA, LA.

(5) Setting of analog output type

Analog output type setting screen

An item intended to be output as an analog signal is selected from 4 items: Measured value (PV), target set value (SV), control output 1 (OUT1) and control output 2 (OUT2).

Analog output scaling lower limit setting screen
Initial value: 0.0 (The lower limit value of setting range for PV and SV. 0.0 for OUT1 and OUT2.)
Setting range: Within measuring range when PV/SV is selected. 0.0 ~ 100.0% when OUT1 or OUT2 is selected. A minimum value (0mV, 4mA or 0V) of analog output signal is set as the lower limit value of scaling for an intended output value.

To the 1-27 screen
To the 1-34 screen
1-34 Analog output scaling higher limit setting screen

- Initial value: 800.0 (The higher limit value of setting range for PV/SV and 100.0 for OUT1 and OUT2.)
- Setting range: Within measuring range when PV or SV is selected. 0.0 ~ 100.0% when OUT1 or OUT2 is selected.
- A maximum level (10mV, 20mA or 10V) of analog output signal is set as the higher limit value of scaling for an intended output value.
- Reverse scaling (Ao_L>Ao_H) is also possible.

1-35 DI mode setting screen

- Initial value: SB
- Setting range: NON, SB, STBY, ACT
- External input (DI) type is set in accordance with the intended use.
- For DI, refer to Section 8-8.

1-36 Communication mode setting screen

- Initial value: Loc (local)
- Setting range: Loc, Com (com)
- Only a change from Com to Loc is possible by operating keys.
- Communication is enabled in the mode displayed on the bottom.

1-37 Communication protocol setting screen

- Initial value: Shim
- Setting range: Shim (Shimaden protocol), asc (MODBUS ASCII protocol), rtu (MODBUS RTU protocol)
- A communication protocol is set.

1-38 Communication address setting screen

- Initial value: 1
- Setting range: 1 ~ 255
- A machine number is set in case two or more controllers are connected through communication.

1-39 Communication data format setting screen

- Initial value: 7E1
- Setting range: 7E1, 7E2, 7N1, 7N2, BE1, BE2, 8N1, 8N2
- A communication data format is set.

1-40 Start character setting screen

- Initial value: s_7
- Setting range: s_7, A_7
- Which of s_7 (STX) and A_7 is used as the start character of communication format is set.
- This is used for Shimaden protocol only.

1-41 BCC operation type setting screen

- Initial value: 1
- Setting range: 1, 2, 3, 4
- An operation type for error detection BCC check is set from 1 to 4 shown in the following table:
- This is used for Shimaden protocol only.

<table>
<thead>
<tr>
<th>Type of Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add operation from start character to text end character</td>
</tr>
<tr>
<td>2</td>
<td>2's complement after add operation from start character to text end character</td>
</tr>
<tr>
<td>3</td>
<td>Exclusive OR operation immediately after start character to text end character</td>
</tr>
<tr>
<td>4</td>
<td>Without BCC operation</td>
</tr>
</tbody>
</table>

1-42 Communication speed setting screen

- Initial value: 1200
- Setting range: 1200, 2400, 4800, 9600, 19200 bps
- A communication speed is set but 19200 bps is displayed as 1920 because of limitation in the number of digits.

1-43 Communication delay time setting screen

- Initial value: 20
- Setting range: 1 ~ 100
- Time lag from receiving a communication command to transmission is set.
- Delay time = Set value × 0.512 msec

1-44 Communication memory mode setting screen

- Initial value: E_{EP}
- Setting range: E_{EP}, r_{AR}, r_{E}
- A mode of writing data in EEPROM and RAM in communication is set.

<table>
<thead>
<tr>
<th>Writing Process</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing entirely in EEPROM</td>
<td>E_{EP}</td>
</tr>
<tr>
<td>Writing entirely in RAM</td>
<td>r_{AR}</td>
</tr>
<tr>
<td>Writing OUT1 and OUT2 in RAM and others in EEPROM</td>
<td>r_{E}</td>
</tr>
</tbody>
</table>

The following diagrams show analog output characteristics by scaling:

- In the case of Ao_L<Ao_H
- In the case of Ao_L>Ao_H

6) Setting of DI

7) Setting of communication

Table of BCC Operation Types

Communication speed setting screen

Communication delay time setting screen

Communication memory mode setting screen

Communication data format setting screen
(8) Setting of control output characteristic

Control output characteristic setting screen

<table>
<thead>
<tr>
<th>Output</th>
<th>Characteristic</th>
<th>OUT 1</th>
<th>OUT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-output</td>
<td>RA Heating</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DA Cooling</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2-output</td>
<td>RA Heating</td>
<td>Cooling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DA Heating</td>
<td>Heating</td>
<td></td>
</tr>
</tbody>
</table>

For control output characteristic, refer to Section 8-7.

(9) Setting of soft start time

Soft start setting screen

Initial value: OFF
Setting range: OFF, 1 ~ 100 seconds
Soft start time for changing output gradually is set.
Soft start does not function when OFF is set.
For details, See Section 8-9.

(10) Setting of SV limiter

SV limiter lower limit value setting screen

Initial value: Lower limit value of measuring range
Setting range: Measuring range lower limit value ~ higher limit value - 1 count
In case a narrower setting range of target value than a measuring range is used, a lower limit value is set.
(It can prevent erroneous setting in a risky range and has some other advantageous effect.)

SV limiter higher limit value setting screen

Initial value: Higher limit value of measuring range
Setting range: Measuring range lower limit value ~ higher limit value + 1 count
In case a narrower setting range of target value than a measuring range is used, a higher limit value is set.
(It can prevent erroneous setting in a risky range and has some other advantageous effect.)

NOTE:
A higher limit value which is smaller than a lower limit value +5000 counts.
If input scaling higher/lower limits is set to make difference between the higher and lower limit values less than +10 counts or more than +5000 counts, the higher limit value is automatically changed to make the difference +10 counts or +5000 counts.
A higher limit value which is smaller than a lower limit value +10 counts or larger than a lower limit value +5000 counts is unable to be set.

(11) Setting of PV bias value

PV bias value setting screen

Initial value: 0 unit
Setting range: ~1999 ~ 2000 units
This value is used to correct an input error from a sensor or the like.
When a bias is used, control is also carried out with a corrected value.

(12) Setting of PV filter time

PV filter time setting screen

Initial value: 0 second
Setting range: 0 ~ 100 seconds
In case input changes conspicuously or noise continues, PV filter is used to mitigate such undesirable effect.
When 0 second is set, filter does not function.

(13) Setting of measuring range code

Measuring range code setting screen

Initial value: Universal 05, voltage 86, current 92
Setting range: Select from the Table of Measuring Range Codes in Section 7.
Each code represents a combination of an input type and a measuring range.

(14) Setting of temperature unit

Temperature unit setting screen

Initial value: c
Setting range: c, f
Select c(°C) or f(°F) as the unit of temperature for sensor input.
This screen is not displayed when linear input (mV, V or mA) is selected.

(15) Setting of input scaling

Input scaling lower limit value setting screen

Initial value: 0.0
Setting range: ~1999 ~ 9999 units
A lower limit value of scaling of linear input (mV, V or mA) is set.
For sensor input, the screen is for monitoring only and setting is not possible.

Input scaling higher limit value setting screen

Initial value: 100.0
Setting range: Sc_L * 10 ~ Sc_H * 5000
A higher limit value of scaling of linear input (mV, V or mA) is set.
For sensor input, the screen is for monitoring only and setting is not possible.

NOTE:
If input scaling higher/lower limits is set to make difference between the higher and lower limit values less than +10 counts or more than +5000 counts, the higher limit value is automatically changed to make the difference +10 counts or +5000 counts.
A higher limit value which is smaller than a lower limit value +10 counts or larger than a lower limit value +5000 counts is unable to be set.

(16) Setting of CJ (Cold Junction)

CJ external/internal switching setting screen

Initial value: Internally
Setting range: Internally, Externally
Switch the use of thermocouple’s CJ internally or externally.
This screen is displayed when thermocouple input is selected.

(17) Setting of PV display at STBY

PV display at standby setting screen

Initial value: Displays PV value
Setting range: Displays PV value, Displays Stby
Set whether or not PV value is displayed.
The character “Stby” is displayed instead of PV value.

From the 1-0 initial screen of the screen group 1
To the 1-0 initial screen of the screen group

For details, See Section 7.
Select a measuring range from the following table.
A change of the code will initialize all date related to the measuring range.

<table>
<thead>
<tr>
<th>Input type</th>
<th>Code</th>
<th>Measuring range (°C)</th>
<th>Measuring range (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B *1</td>
<td>01</td>
<td>0 ~ 1800</td>
<td>0 ~ 3300</td>
</tr>
<tr>
<td>R</td>
<td>02</td>
<td>0 ~ 1700</td>
<td>0 ~ 3100</td>
</tr>
<tr>
<td>S</td>
<td>03</td>
<td>0 ~ 1700</td>
<td>0 ~ 3100</td>
</tr>
<tr>
<td>K</td>
<td>05</td>
<td>0.0 ~ 800.0</td>
<td>32.0 ~ 1500.0</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>0 ~ 1200</td>
<td>0 ~ 2200</td>
</tr>
<tr>
<td>E</td>
<td>07</td>
<td>0 ~ 700</td>
<td>0 ~ 1300</td>
</tr>
<tr>
<td>J</td>
<td>08</td>
<td>0 ~ 600</td>
<td>0 ~ 1100</td>
</tr>
<tr>
<td>T</td>
<td>09</td>
<td>0 ~ 1700</td>
<td>0 ~ 3100</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>0 ~ 1300</td>
<td>0 ~ 2300</td>
</tr>
<tr>
<td>PL II *3</td>
<td>11</td>
<td>0 ~ 1300</td>
<td>0 ~ 2300</td>
</tr>
<tr>
<td>WRe5-26 *4</td>
<td>12</td>
<td>0 ~ 2300</td>
<td>0 ~ 4200</td>
</tr>
<tr>
<td>U *5</td>
<td>13</td>
<td>0 ~ 800.0</td>
<td>0 ~ 1500</td>
</tr>
<tr>
<td>L *5</td>
<td>14</td>
<td>0 ~ 600</td>
<td>0 ~ 1100</td>
</tr>
<tr>
<td>AuFe-Cr *6</td>
<td>15</td>
<td>10.0 ~ 350.0 K</td>
<td>10.0 ~ 350.0 K</td>
</tr>
<tr>
<td>AuFe-Cr *7</td>
<td>16</td>
<td>0.0 ~ 350.0 K</td>
<td>0.0 ~ 350.0 K</td>
</tr>
<tr>
<td>Pt100</td>
<td>31</td>
<td>0 ~ 200</td>
<td>0 ~ 392.00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0 ~ 100</td>
<td>0 ~ 180.00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>0.0 ~ 50.0</td>
<td>0.0 ~ 90.00</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>0 ~ 200</td>
<td>0.0 ~ 392.00</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0 ~ 100</td>
<td>0 ~ 180.00</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0 ~ 50.0</td>
<td>0.0 ~ 90.00</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0 ~ 100</td>
<td>0 ~ 180.00</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>0 ~ 200</td>
<td>0 ~ 392.00</td>
</tr>
<tr>
<td>mV</td>
<td>1</td>
<td>Initial value: 0.0 ~ 100.0</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>Input scaling setting range: -1999 ~ 9999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Span: 10 ~ 5000 counts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Position of decimal point: None 1, 2 or 3 decimal places</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>91</td>
<td>Lower limit value < higher limit value</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Unless otherwise specified, the measuring range listed below will be set as the factory default.

<table>
<thead>
<tr>
<th>Input</th>
<th>Specification/Rating</th>
<th>Measuring Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal input</td>
<td>K thermocouple</td>
<td>0.0 ~ 1300.0°C</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>0 ~ 10V DC</td>
<td>0.0 ~ 100.0</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>4 ~ 20mA DC</td>
<td>0.0 ~ 100.0</td>
</tr>
</tbody>
</table>
8. Explanation of Functions

All the details are mentioned here except the explanation of 5-5. Procedure of Setting in Screen Group 0.

8-1. Events

(1) Deviation alarm

An alarm action point is set by a deviation from target set value (SV).
For example, when the target set value is 20°C, +10°C should be set for higher limit deviation alarm in order to put an alarm in action at 30°C and higher.
To put an alarm in action at 30°C and lower when the target set value is 100°C, –70°C should be set for higher limit deviation alarm.
Higher limit deviation alarm must be higher than the target set value and lower limit deviation alarm must be lower than the target set value.
This is conveniently used to make the alarm action point follow deviation from the target set value. The setting range will be –1999~2000 unit.

(2) Absolute value alarm

An alarm action point is set by an absolute value.
For example, 50°C should be set for higher limit absolute alarm in order to put an alarm in action at 50°C and higher.
To put an alarm in action at 20°C and lower, 20°C should be set for lower limit absolute alarm.
Both higher limit and lower limit can be set at any value within the measuring range.
This alarm is convenient when the alarm action point is fixed.

(3) Standby action

In case the event standby action is set at 2 or 3 (on the screen 1-23 or 1-26), the alarm withholds its action even if the PV value is in the event action range (ON range) when the power is applied, when the setting value is changed, or when the standby is released.
The alarm will go on once the PV value leaves the event action range, the standby action is released, and the PV value enters the event action range again.

(4) No-standby action

In case the event standby action is set at 1 or 4 (on the screen 1-23 or 1-26), the alarm is output when the PV value enters the event action range, regardless of whether the power is applied, the SV changed, or the standby released.

(5) Control mode

In case the event standby action is set at 4 (on the screen 1-23 or 1-26), alarm is not output when scaleover has occurred or when the controller is in standby.

8-2. Selection of Event Standby Action Code

This is additional description for the explanation in 1-23 event 1 standby action code setting screen of the screen group 1.
The 1-26 event 2 standby action code setting screen is the same.

◎ Select a code from 1, 2 or 3 of the standby action code table when event output is used as an alarm.
◎ Select 4 when event output is used for control. Note, however, that setting 4 will not let event output ON even when the input error has occurred.
◎ When 2 is set, the standby function is in action when power is applied or when standby is released.
◎ When 3 is set, the standby function is in action when power is applied, when standby is released, or when SV in execution is changed.
◎ A change to 1 or 4 while standby action is in execution, the standby action will be released immediately.
When power is supplied and if a PV value is out of a range in which an event action is ON, standby action becomes invalid even when 2 or 3 has been set for standby action.
8-3. Alarm Action Diagrams

The followings are diagrams showing alarm actions that can be selected as event 1 and event 2.

- **Hd**: Higher limit deviation alarm
- **Ld**: Lower limit deviation alarm

\[\triangle : SV \text{ value} \quad \Delta : \text{Alarm action point} \]

\[\begin{align*}
Hd & : \text{Higher limit deviation alarm} \\
Ld & : \text{Lower limit deviation alarm}
\end{align*} \]

\[\begin{align*}
\text{Action ON} & \quad \text{Action ON}
\end{align*} \]

\[\text{Hysteresis} \quad \text{Hysteresis} \]

- **Od**: Outside higher/lower limit deviations alarm
- **Cd**: Within higher/lower limit deviations alarm

\[\text{Action ON} \quad \text{Action ON} \]

- **Ha**: Higher limit absolute value alarm
- **La**: Lower limit absolute value alarm

\[\text{Action ON} \quad \text{Action ON} \]

- **Sa**: Scaleover

\[\begin{align*}
\text{Action ON} & \quad \text{Action ON}
\end{align*} \]

\[-10\% \quad \text{PV value} \quad 110\% \]

8-4. P.I.D.

(1) **P (Proportional band)**

A percentage at which control output varies with respect to a measuring range is set. Control output increases or decreases in proportion to a difference between PV and SV values.

The narrower the proportional band, the more conspicuously output changes to strengthen proportional action. If it is too narrow, however, the result of control will be close to ON-OFF action.

(2) **I (Integral time)**

This is the function to correct an offset (constant deviation). The longer the integral time, the weaker the corrective action and the shorter the time the stronger the action but control result may be undulated due to integral hunting.

(3) **D (Derivative time)**

This is the function to estimate a change in control output, suppress overshoot caused by integration and improve control stability.

The longer the derivative time, the stronger the derivative action but control result may be vibratile.

(4) **MR (Manual Reset)**

In PID action, an offset is corrected automatically by I, i.e., integration. When OFF is set for I, correction is not carried out and so output should be increased or decreased manually. This method is called manual reset.

8-5. Lower Limit and Higher Limit Setting Limiters

- Output limiter means to limit a minimum or maximum value of control output and this function is effective in specifying the lowest temperature or suppressing overshooting of control.

- Output limiter gives preference to a lower limit value. When a larger lower limit value than a higher limit value is set, the higher limit value is automatically changed to the lower limit value + 1%. In other words, it is not possible to set a higher limit value which is less than a lower limit + 1%.
8-6. Proportional Cycle Time
It should be within a range from 1~120 seconds in the case of contact output or SSR drive voltage output. Proportional cycle time is ON time + OFF time.
The following diagram shows the correlation between proportional cycle time and control output.

○ In case the output is 20 %.

Output ON
Output OFF
Proportional Cycle Time

Output is ON during 20 % time of the proportional cycle time, and OFF during 80 % time of proportional cycle time.

○ In case the output is 60 %.

Output ON
Output OFF
Proportional Cycle Time

Output is ON during 60 % time of the proportional cycle time, and OFF during 40 % time of proportional cycle time.

8-7. Control Output Characteristics

(1) One-output
For heating action, set RA (reverse action). For cooling action, set DA (direct action).

(2) Two-output
○ In case heating action is OUT1 and cooling action OUT2, set it at RA (reverse action).
○ In case heating action is OUT1 and heating action OUT2, set it at DA (direct action).

Control output characteristics with two outputs are shown in the following diagrams. ○ shows heating and cooling control and ○ two-stage heating control.

8-8. External input (DI)
The DI signal is detected by the level. The ON-OFF detection is determined by a 150-msec continuum state across the SB,DI terminal. The DI type can be specified on the 1-35 DI mode setting screen.

(1) Set value bias (SB)
This can be set by specifying SB (Set value Bias) to DI mode. SB value can be set on the 0-7 set value bias setting screen.

When DI input signal is OFF : Execution SV = SV
When DI input signal is ON : Execution SV = SV + SB

Note that in case the execution SV lies outside the range of SV limiters, the actual executed SV is restricted by the SV limiter lower/higher limit values (which can be set on the 1-47 SV limiter lower limit value setting screen or 1-48 SV limiter higher limit value setting screen).
When auto tuning is executed, the SB signal level is maintained at the level just before the auto tuning was started, and SB signal detection is not performed.
(2) Standby (STBY)
This can be set by specifying STBY (standby) at DI mode.
If STBY is selected, the 0-3 STBY action setting screen is for monitoring only, and the setting cannot be performed.

- When DI input signal is OFF: The controller is under control. PID control is executed.
- When DI input signal is ON: The controller is on standby.

For STBY, refer to section 5-5 (4).

(3) Control action characteristics (ACT)
This can be set by specifying ACT (action characteristics) at DI mode.
If ACT is selected, the 1-45 control output characteristic setting screen is for monitoring only, and the setting cannot be performed.

- When DI input signal is OFF: RA characteristics are assumed.
- When DI input signal is ON: DA characteristics are assumed.

For RA/DA, refer to section 8-7.

8-9. Soft Start
It is the function to raise control output gradually in a set time upon applying power, releasing STBY, and at the time of return from scaleover to normal. The function effectively prevents excess current from being present in a heater or the like.

(1) Conditions of soft start function is put in action
- Under the automatic output mode, when power is applied, when STBY is released, or when a normal state is returned to from scaleover.
- When P (proportional band) is not OFF on the 1-2 output 1 proportional band setting screen.
- When soft start time has been set, i.e., not OFF on the 1-46 soft start time setting screen.

(2) Conditions of soft start is released
- Soft start time has elapsed normally.
- An output value under soft start control exceeds a PID operated output value.
- Soft start time is turned OFF by key operation.
- The automatic output mode is changed to the manual output mode by key operation.
- AT (auto tuning) is executed by key operation.
- The setting of P (proportional band) is changed to OFF by key operation.
- The measuring range of input is changed by key operation.
- A control output characteristic is changed by key operation.
- When the mode is switched to STBY.
9. Maintenance and Troubleshooting

9-1. Cause of Trouble and Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Error code is displayed.</td>
<td>1. Refer to "9-2. Error Codes, Causes and Remedies."</td>
<td>1. Refer to "9-2. Error Codes, Causes and Remedies."</td>
</tr>
<tr>
<td>2. Displayed PV value seems to be incorrect.</td>
<td>1. Set measuring range code is different from that of input sensorlinput signal. 2. Erroneous wiring to input terminals of sensor.</td>
<td>1. Check if set measuring range code is correct for input signal. 2. Correct wiring to input terminals of sensor.</td>
</tr>
<tr>
<td>3. Display on the front panel goes out and the instrument does not operate.</td>
<td>1. Problem with power supply and wiring connection. 2. Deterioration of the product.</td>
<td>1. Inspect portions related to power source and wire connection. Check wiring. 2. Examine the product and repair or replace.</td>
</tr>
<tr>
<td>4. Key unable to be operated.</td>
<td>1. Keylock is in effect. 2. Deterioration of the product. 3. In case communication function is added, the communication mode (Com) has been set.</td>
<td>1. Release keylock. 2. Examine and repair or replace the product. 3. Change the communication setting to the local mode (Loc).</td>
</tr>
<tr>
<td>5. ON-OFF action of control output is too fast.</td>
<td>1. Too small a value set for hysteresis of ON-OFF action.</td>
<td>1. Increase the hysteresis value of ON-OFF action.</td>
</tr>
</tbody>
</table>

9-2. Error Codes, Causes and Remedies

(1) Input measured value problems

<table>
<thead>
<tr>
<th>Screen display</th>
<th>Problem</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLLL</td>
<td>Lower limit side scaleover.</td>
<td>Input measured value fell from lower limit of measuring range by 10%.</td>
<td>Check wiring of reverse polarity for measured value input or wiring for a possible break.</td>
</tr>
<tr>
<td>C JHH</td>
<td>Higher limit side scaleover of cold junction (CJ) of thermocouple input.</td>
<td>Ambient temperature of the product has exceeded 80°C.</td>
<td>1. Reduce ambient temperature to the level provided in the environment conditions for the product. 2. In case ambient temperature has not exceeded 80°C, examine the product.</td>
</tr>
<tr>
<td>C JLL</td>
<td>Higher limit side scaleover of cold junction (CJ) of thermocouple input.</td>
<td>Ambient temperature of the product has fallen to -20°C or lower.</td>
<td>1. Raise ambient temperature to the level provided in the environment conditions for the product. 2. In case ambient temperature has not fallen to -20°C or lower, examine the product.</td>
</tr>
</tbody>
</table>

(2) Heater break/loop alarm problems

<table>
<thead>
<tr>
<th>Screen display</th>
<th>Problem</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbHHH</td>
<td>Input value from heater current detector has exceeded 55.0A.</td>
<td>Excess current.</td>
<td>1. Reduce the current. 2. Examine the product.</td>
</tr>
<tr>
<td>HbLLL</td>
<td>The product is in trouble.</td>
<td>The product is in trouble.</td>
<td>Examine, repair or replace the product.</td>
</tr>
</tbody>
</table>
10. Record of Parameter Setting

For convenience sake, recording set values and selected items is recommended. The initial values are of Code 05 (K)

<table>
<thead>
<tr>
<th>Screen No.</th>
<th>Parameter (Item)/screen display</th>
<th>Initial value</th>
<th>Setting/Selection</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0</td>
<td>Basic screen</td>
<td>0 (0)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0-1</td>
<td>Output 1 monitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>Output 2 monitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>STBY action</td>
<td>STBY. (STBY)</td>
<td>E4E</td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>AT action</td>
<td>At.</td>
<td>aFF</td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>Event 1 set value setting</td>
<td>E1Hd.</td>
<td>2000 units</td>
<td></td>
</tr>
<tr>
<td>0-6</td>
<td>Event 2 set value setting</td>
<td>E2Hd.</td>
<td>~1999 units</td>
<td></td>
</tr>
<tr>
<td>0-7</td>
<td>Set value bias setting</td>
<td>Sb.</td>
<td>0 unit</td>
<td></td>
</tr>
<tr>
<td>1-0</td>
<td>Initial screen</td>
<td>PARA.</td>
<td>SFR</td>
<td></td>
</tr>
<tr>
<td>1-1</td>
<td>Keylock setting</td>
<td>KLC.</td>
<td>aFF</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>Output 1 proportional band setting</td>
<td>dF.</td>
<td>20 units</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>Output 1 hysteresis</td>
<td>dF.</td>
<td>20 units</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>Output 1 integral time</td>
<td>I.</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>Output 1 derivative time</td>
<td>d.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>Output 1 manual reset</td>
<td>m.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1-7</td>
<td>Output 1 target value function</td>
<td>SF.</td>
<td>040</td>
<td></td>
</tr>
<tr>
<td>1-8</td>
<td>Output 1 lower limit output limiter</td>
<td>o-L</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1-9</td>
<td>Output 1 higher limit output limiter</td>
<td>o-H.</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>Output 1 proportional cycle time</td>
<td>o-C.</td>
<td>Y: 30, P: 3</td>
<td></td>
</tr>
<tr>
<td>1-11</td>
<td>Output 2 proportional band setting</td>
<td>P2.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1-12</td>
<td>Output 2 hysteresis</td>
<td>dF2.</td>
<td>20 units</td>
<td></td>
</tr>
<tr>
<td>1-13</td>
<td>Output 2 integral time</td>
<td>I2.</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1-14</td>
<td>Output 2 derivative time</td>
<td>d2.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>Output dead band</td>
<td>dB2.</td>
<td>0 unit</td>
<td></td>
</tr>
<tr>
<td>1-16</td>
<td>Output 2 target value function</td>
<td>SF2.</td>
<td>040</td>
<td></td>
</tr>
<tr>
<td>1-17</td>
<td>Output 2 lower limit output limiter</td>
<td>o-L2.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1-18</td>
<td>Output 2 higher limit output limiter</td>
<td>o-H2.</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1-19</td>
<td>Output 2 proportional cycle time</td>
<td>o-C2.</td>
<td>Y: 30, P: 3</td>
<td></td>
</tr>
<tr>
<td>1-20</td>
<td>Event at STBY</td>
<td>STEV.</td>
<td>aFF</td>
<td></td>
</tr>
<tr>
<td>1-21</td>
<td>Event 1 type</td>
<td>E1-m.</td>
<td>Hd</td>
<td></td>
</tr>
<tr>
<td>1-22</td>
<td>Event 1 hysteresis</td>
<td>E1-d.</td>
<td>5 units</td>
<td></td>
</tr>
<tr>
<td>1-23</td>
<td>Event 1 standby action</td>
<td>E1-t.</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>1-24</td>
<td>Event 2 type</td>
<td>E2-m.</td>
<td>Ld</td>
<td></td>
</tr>
<tr>
<td>1-25</td>
<td>Event 2 hysteresis</td>
<td>E2-d.</td>
<td>5 units</td>
<td></td>
</tr>
<tr>
<td>1-26</td>
<td>Event 2 standby action</td>
<td>E2-t.</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>1-27</td>
<td>Heater current monitor</td>
<td>Hb-A.</td>
<td>Lc</td>
<td></td>
</tr>
<tr>
<td>1-28</td>
<td>Heater break/loop alarm</td>
<td>Hb-m.</td>
<td>Lc</td>
<td></td>
</tr>
<tr>
<td>1-29</td>
<td>Heater break/loop alarm standby</td>
<td>Hb-I.</td>
<td>aFF</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>Heater break alarm value</td>
<td>Hb-S.</td>
<td>aFF</td>
<td></td>
</tr>
<tr>
<td>1-31</td>
<td>Heater loop alarm value</td>
<td>HL-S.</td>
<td>aFF</td>
<td></td>
</tr>
<tr>
<td>1-32</td>
<td>Analog output type</td>
<td>Ao-m.</td>
<td>P0</td>
<td></td>
</tr>
<tr>
<td>1-33</td>
<td>Analog output scaling lower limit</td>
<td>Ao-L.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1-34</td>
<td>Analog output scaling higher limit</td>
<td>Ao-H.</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>1-35</td>
<td>Di mode</td>
<td>di.</td>
<td>5b</td>
<td></td>
</tr>
<tr>
<td>1-36</td>
<td>Communication mode setting</td>
<td>comm.</td>
<td>Loc</td>
<td></td>
</tr>
<tr>
<td>1-37</td>
<td>Communication protocol</td>
<td>Prot.</td>
<td>5k7</td>
<td></td>
</tr>
<tr>
<td>1-38</td>
<td>Communication address</td>
<td>Addr.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1-39</td>
<td>Communication data format</td>
<td>dAA.</td>
<td>7E</td>
<td></td>
</tr>
<tr>
<td>1-40</td>
<td>Start character</td>
<td>SchA.</td>
<td>5L4</td>
<td></td>
</tr>
<tr>
<td>1-41</td>
<td>BCC operation type</td>
<td>bcc.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1-42</td>
<td>Communication speed</td>
<td>bPS.</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>1-43</td>
<td>Communication delay time</td>
<td>del.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1-44</td>
<td>Communication memory mode</td>
<td>mem.</td>
<td>EEP</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>Control output characteristic</td>
<td>Act.</td>
<td>rA</td>
<td></td>
</tr>
<tr>
<td>1-46</td>
<td>Soft start time</td>
<td>SOFT.</td>
<td>aFF</td>
<td></td>
</tr>
<tr>
<td>1-47</td>
<td>SV limiter lower limit value</td>
<td>SV-L.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1-48</td>
<td>SV limiter higher limit value</td>
<td>SV-H.</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>1-49</td>
<td>PV bias value</td>
<td>PV-b.</td>
<td>0 unit</td>
<td></td>
</tr>
<tr>
<td>1-50</td>
<td>PV filter time</td>
<td>PV.F.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1-51</td>
<td>Measuring range codes Universal</td>
<td>rAnG.</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>1-52</td>
<td>Temperature unit</td>
<td>Unit.</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>1-53</td>
<td>Input scaling lower limit</td>
<td>Sc-L.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1-54</td>
<td>Input scaling higher limit</td>
<td>Sc-H.</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>1-55</td>
<td>Input scaling decimal point position</td>
<td>Sdp.</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1-56</td>
<td>CJ external/internal switching</td>
<td>Cj.</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>1-57</td>
<td>PV display at standby setting</td>
<td>Disp.</td>
<td>AT</td>
<td></td>
</tr>
</tbody>
</table>
11. Specifications

Display
- Digital display: Measured value (PV)/7 segments red LED 4 digits
- Target set value (SV)/7 segments green LED 4 digits
- Display accuracy: ±(0.3%FS + 1 digit)
- Excluding reference contact temperature compensation accuracy of thermocouple input.
- Display accuracy maintaining range: ±23°C ± 5°C (18~28°C)
- Display resolution: 0.01°C
- Measured value display range: −10°C~+10°C of measuring range
- Display updating cycle: 0.25 seconds
- Action display/color: 7 type, LED lamp display
- Control output (OUT1, OUT2)/Orange
- Auto tuning (AT)/Green
- Manual control output (MAN)/Green
- Set value bias, communication limiter (SB/COM)/Green

Input
- Type of input: Selectable from Universal (TC, Pt, mV), Voltage (V) and current (mA)
- Thermocouple: B, R, S, K, E, J, T, N, PL II, WRE5-26 (UL (DIN 43710)), AuFe-Cr (Kelvin scale)
- Input impedance: 500kΩ minimum
- External resistance tolerance: below 100Ω
- Burnout function: Standard feature (up scale)
- Reference contact compensation accuracy: ±1°C (within the accuracy maintaining range (23 ± 5°C))
- ±2°C (between 5 and 45°C of ambient temperature)
- R.T.D.: Effect of temperature 0.25 mA
- Normal current: Pt100/JPt100, 3-wire type
- Lead wire tolerance: 5Ω maximum/wire (3 lead wires should have the same resistance.)
- Voltage mV: −10~10, −0.0~1, −0~20, −50~50, −100mV DC
- V: −1−1, 0−1, 0−2, 0−5, 1−5, 0−10V
- Input impedance: 500kΩ minimum
- Current mA: 0~20mA DC
- Receiving impedance: 250Ω
- Input scaling function: Scaling possible for voltage (mV, V) or current (mA) input
- Scaling range: −1999~9999 counts
- Span: 10~5000 counts
- Position of decimal point: None, 1, 2 and 3 decimal places
- Sampling cycle: 0.25 seconds
- PV bias: −1999~2000 units
- PV filter: 0~100 seconds
- Cold junction compensation: Selectable between internal and external by front key
- Isolation: Control input not insulated from system, set value bias, and CT input but insulated from others

Control
- Control mode
 - With 1-output: Expert PID control with auto tuning function
 - RA (reverse characteristic): Heating action
 - DA (direct characteristic): Cooling action
 - With 2-output: Expert PID control with auto tuning function + PID control
 - RA (reverse characteristic): Heating action (OUT1) and cooling action (OUT2)
 - DA (direct characteristic): 2-stage heating action

Output action mode
- MAN (manual), AUTO (automation) / STBY (standby)
- Event at STBY: ON/OFF
- Type of control/rating:
 - Contact 1 a 240V AC 2A (resistive load)
 - 1.2A (inductive load)
 - SSR drive voltage/12V±1.5V DC
 - (Common to Output 1 and 2):
 - SSR drive voltage/12V±1.5V DC
 - (Maximum load current 30mA)
 - Current/4~20mA DC (Maximum load resistance 600Ω)
 - Voltage/0~10V DC (Maximum load current 2mA)
 - Control output resolution:
 - Control output 1: approx. 0.0125% (1/8000)
 - Control output 2: approx. 0.5% (1/200)

PID Control
- Control output 1
 - Proportional band (P): Integral time (I)
 - Derivative time (D):
 - Target value function:
 - ON-OFF hysteresis: OFF, 0.1~999.9% (Effective when P=OFF)
 - OFF, 1~6000 seconds
 - Manual reset:
 - OFF, 0.1~1.00
 - ON-OFF hysteresis: 1~999 units (Effective when P=OFF)
 - Dead band: −1999~5000 units (Overlap with a negative value)
 - Proportional cycle: 1~120 seconds (for contact and SSR drive voltage output)

Manual control
- Output setting range: 0.0~100.0%
- Setting resolution: 0.1%
- Manual → auto switching: Balanceless bumpless transfer
- Soft start:
 - OFF, 1~100 seconds
- AT point:
 - SV value in execution
- Control output characteristic: RA (reverse characteristic)/DA (direct characteristic) switching by front key
- Contact output isolated from all.
 - Analog output not insulated from SSR drive voltage, current and voltage but insulated from others.
 - In case another output is also insulated from SSR drive voltage, current and voltage, however, two outputs are not insulated from each other.

Event output (option)
- Number of event points:
 - 2 points of EV1 and EV2
- Types:
 - Selectable from the following 9 types for EV1 and EV2:
 - No selection
 - Higher limit deviation
 - Lower limit deviation
 - Outside higher lower limit deviations
 - Within higher lower limit deviations
 - Higher limit absolute value
 - Lower limit absolute value
 - Scaleover
 - Heater break/loop alarm
- Event setting range:
 - Absolute values (both higher and lower limit): Within measuring range
 - Deviations (both higher and lower limit): −1999~2000 units
 - Higher/lower limit deviations (within/outside): 0~2000 units
 - Event action:
 - ON-OFF action
 - 1~999 units

29
Standby action: Selectable from the following 4 types;
1. Without standby action.
2. Standby when power is applied or when standby is released.
3. Standby when power is applied, when standby is released or when SV value in execution is changed.
4. Control mode without standby action (No alarm is output at the time of abnormal input).

Output type/rating: Contact (1a x 2 points common)/240V AC 1A (resistive load) 0.25 seconds

Heater break/heater loop alarm option
Heater break/loop detection only for OUT1 (Selecteable when output type is contact or SSR drive voltage)
Current capacity: 30A or 50A CT to be designated when ordering.
Alarm action: Heater current is detected by external CT provided as an accessory. When heater break is detected while control output is ON=Alarm output ON When heater loop alarm is detected while control output is OFF=Alarm output OFF, 0.1~50.0A (Alarm action is stopped by setting OFF)

Communication speed: 1200, 2400, 4800, 9600, 19200 bps
Synchronization system: Start-stop synchronization system
Function code: 03H, 06H (Hex)
Control code: CRLF
Error check: LRC check
Communication delay time: 1~100 (every 0.5 seconds)
Communication address: 1~255
Number of connectable instruments: 30
Communication system: RS-232C, RS-485
Type: RS-232C, RS-485
Communication protocol (1): Shimaden protocol
Data format: 7E1, 7E2, 7N1, 7N2, 8E1, 8E2, 8N1, 8N2
Control code: STX, ETX, CR, STX, ETX, CRLF, @:
Communication BCC: Add, Add two's cmp, XOR, None
Communication memory mode: EEPROM

Communication protocol (2):
Data format: MODBUS ASCII mode
Control code: CRLF
Function code: 03H, 06H (Hex)
Error check: LRC check

Communication protocol (3):
Data format: MODBUS RTU mode
Control code: None
Error check: CRC-16
Function code: 03H, 06H (Hex)

Isolation: Communication signals insulated from system, each input and each output.

Analog output (option)
Number of output points: 1 point
Type of analog output: Selectable from measured value, target value (SV in execution), control output 1 and control output 2
Output signal/rating: 4-20mA DC/Maximum load resistance 30 Ω
Output scaling: 0~10V DC/Maximum load current 2mA
Measurable value, target value: Within measuring range (reverse scaling possible)
Control output 1 and 2 0.0~100.0% (reverse scaling possible)
Output accuracy: ±0.3% FS (with respect to displayed value)
Output resolution: About 0.01% (1/10000)
Output updating cycle: 0.25 seconds
Isolation: Analog output insulated from system and inputs but not insulated from control output except contact output.

General specifications
Data storage: Non-volatile memory (EEPROM)
Environmental conditions for instrument operation:
Temperature: –10~+50°C
Humidity: 90% RH or less (no dew condensation)
Height: 2000m from the sea level or lower
Degree of pollution: 2
Category: II
Humidity: 90% RH or less (no dew condensation)
Power consumption: Either 100-240V AC±10% 50/60Hz or 24V AC/DC±10% to be designated.
SR91: 100-240V AC 11VA maximum for AC; 6W for DC 24V; 7VA for AC 24V SR92, SR93 and SR94: 15VA maximum for 100-240V AC; 8W for DC 24V; 9VA for AC 24V
Input/noise removal ratio: 50 dB or higher in normal mode (50/60 Hz)
130 dB or higher in common mode (50/60 Hz)
Conformity with standards:
Safety: IEC61010 and EN61010-1
EMC: EN61326
Insulation resistance: Between input/output terminals and power terminal 500V DC 20MΩ or above; Between input/output terminals and protective conductor terminal 500V DC 20MΩ or above
Dielectric strength: Between input/output terminals and power terminal 2300V AC/minute; Between power terminal and protective conductor terminal 1500V AC/minute
Protective structure: Only front panel has dust-proof and drip-proof structure equivalent to IP66.
Material of case: PPO resin molding (equivalent to UL94V-1)
External dimensions:
SR91: H48 × W48 × D111 (Panel depth: 100) mm SR92: H72 × W72 × D111 (Panel depth: 100) mm SR93: H96 × W96 × D111 (Panel depth: 100) mm SR94: H96 × W96 × D111 (Panel depth: 100) mm
Mounting: Push-in panel (one-touch mount)
Panel thickness: 1.0~4.0 mm
Panel cutout: SR91: H45 × W45 mm SR92: H68 × W68 mm SR93: H92 × W92 mm SR94: H92 × W45 mm
Weight: SR91: Approximately 170 g SR92, SR93 and SR94: Approximately 210 g SR94: Approximately 240 g
The contents of this manual are subject to change without notice.

Temperature and Humidity Control Specialists

SHIMADEN CO., LTD.

http://www.shimaden.co.jp/

Head Office: 2-30-10 Kitamachi, Nerima-ku, Tokyo 179-0081 Japan
Phone: +81-3-3931-7891 Fax: +81-3-3931-3089 E-mail:exp-dept@shimaden.co.jp

PRINTED IN JAPAN